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Prediction of lameness using automatically
recorded activity, behavior and production
data in post-parturient Irish dairy cows
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Abstract

Background: Although visual locomotion scoring is inexpensive and simplistic, it is also time consuming and
subjective. Automated lameness detection methods have been developed to replace the visual locomotion scoring
and aid in early and accurate detection. Several types of sensors are measuring traits such as activity, lying behavior
or temperature. Previous studies on automatic lameness detection have been unable to achieve high accuracy in
combination with practical implementation in a on farm commercial setting. The objective of our research was to
develop a prediction model for lameness in dairy cattle using a combination of remote sensor technology and
other animal records that will translate sensor data into easy to interpret classified locomotion information for the
farmer. During an 11-month period, data from 164 Holstein-Friesian dairy cows were gathered, housed at an Irish
research farm. A neck-mounted accelerometer was used to gather behavioral metrics, additional automatically
recorded data consisted of milk production and live weight. Locomotion scoring data were manually recorded,
using a one-to-five scale (1 = non-lame, 5 = severely lame). Locomotion scores where then used to label the cows
as sound (locomotion score 1) or unsound (locomotion score ≥ 2). Four supervised classification models, using a
gradient boosted decision tree machine learning algorithm, were constructed to investigate whether cows could
be classified as sound or unsound. Data available for model building included behavioral metrics, milk production
and animal characteristics.

Results: The resulting models were constructed using various combinations of the data sources. The accuracy of the
models was then compared using confusion matrices, receiver-operator characteristic curves and calibration plots. The
model which achieved the highest performance according to the accuracy measures, was the model combining all
the available data, resulting in an area under the curve of 85% and a sensitivity and specificity of 78%.

Conclusion: These results show that 85% of this model’s predictions were correct in identifying cows as sound or
unsound, showing that the use of a neck-mounted accelerometer, in combination with production and other animal
data, has potential to replace visual locomotion scoring as lameness detection method in dairy cows.
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Introduction
With the ongoing growth of the world population and
the abolition of the EU milk quotas in 2015, opportun-
ities for the expansion of the dairy sector persist.
Efficiency, and thereby the milk production per cow, has
been increased over the past decades by selective breed-
ing, increased milking frequency and feeding [18]. This
intensification, together with specialization, has had im-
plications on animal welfare. Restricted opportunity to
perform natural behaviors such as grazing and increased
pressure on staff time has led to a higher prevalence of
both lameness and mastitis [17, 19, 37]. Earlier studies
have reported lameness prevalence varying from 1.2%
[53] to 5.1% in Sweden [41] to 36% in England and
Wales [10] and between 23 and 70% in Europe and
North America [30].
Lameness is an expression of pain, which can have

several causes including trauma, infectious diseases and
disfunction of one or more hooves or limbs [13, 52, 67].
This diverse range of disorders and their multifactorial
etiology, make lameness difficult to prevent and treat,
resulting in potentially a major welfare issue on farms
[13, 48]. Bovines instinctively mask pain, lowering visual
expression of lameness and impeding visual detection
[20, 24, 45]. Early detection of lameness can increase
treatment success, may prevent lameness from becoming
chronic and may diminish the negative impact of lame-
ness on production [8, 21, 71].
Lameness is usually detected by the herdsman, claw

trimmer or veterinarian, during routine trimming or
by visual inspection of the cow’s locomotion. Visual
locomotion scoring (LS) is time consuming and
subjective, and farmers currently have less time to
intensely monitor herd health due to increased farm
size [6, 50]. Consequently, lameness detection and
treatment are often delayed, with Alawneh et al. [2]
estimating a median interval of 28 days from the onset
of a LS > 3, recorded using the 5-point scale described
by Sprecher et al. [55], to the treatment of lameness.
Because visual observation of the gait of cows has

limits, other indicators of lameness may be useful for
detection. Examples of these indicators include a change
in the behavioral time-budget of cows, weight shifting
between hind legs and resting of a painful foot [26, 58].
Sepúlveda-Varas et al. [51] found a relation between
increase in beta-hydroxybutyrate (BHBA) concentrations
and development of lesions in cows. Several studies have
attempted to use these indicators to predict the degree
and onset of lameness [36, 50, 72].
Automated detection methods for lameness have been

developed to aid in early and accurate detection of lame-
ness. Several types of sensors are involved in these
methods, to measure traits as activity, lying behavior and
temperature [7, 8]. However, scarcely any of the

researched methods and models have been implemented
in practice, mostly due to excessive error rates and false
positives alerts, or costs and ease of implementation for
the technology [32, 60]. Zhao et al. [71] investigated if
gait characteristics could be extracted from leg swing
analyses, using computer vision, and this resulted to be
effective for quantifying lameness degeneration. How-
ever, it was suggested to explore a combination of tech-
nologies to generate a combined system that outputs a
continuous locomotion score. Another study researched
the possibility of downscaling the Gaitwise pressure mat,
without significantly losing detection performance of
lameness [60]. The study concluded that when both the
measurement-zone length and sensor resolution were
reduced, the same performance was achieved compared
to the original set up. Wood et al. [70] reported that an
increase in temperature associated with foot lesions
could be detected by using thermography, but the le-
sions could not be differentiated with the technique.
Thorup et al. [57] compared symmetries of left and right
limb pair curves using force plates and demonstrated
lower levels of symmetry to be present in lame cows
compared to non-lame cows.
A study by Haladjian et al. [28] used a support vector

machine classification algorithm to classify cow’s strides
as normal or abnormal. Anomaly detection was used,
which aims to learn a computing device what “normal”
events look like to detect deviations from those, in their
case lameness. Another study used a decision tree for
the classification of lameness into 3 categories, after data
was gathered using an automatic vision-based system
[71].. A decision tree uses if-then rules at each split of a
branch to label all the items with a certain class in each
leaf [71]. Jiang et al. [33] used a deep learning network
for the detection of key parts of dairy cows, which can
be used in lameness detection by using video analysis
technology.
Given the challenge outlined above, there is a high

demand for high performance, and easy to implement,
analytical detection models that translate sensor data
into useful information for farmers.
The objectives of this study were to use machine

learning methods to develop a prediction model for
lameness in dairy cattle, using commercially available
remote sensor technology in combination with routinely
available animal data translated into classified lameness
predictions, useful for the farmer to replace visual loco-
motion scoring for early lameness detection.

Materials and methods
The study was carried out in accordance with University
College Dublin’s (UCD) guidelines and approval on
ethical animal research.
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From February 2017 until December 2017, data were
collected from 164 Holstein-Friesian dairy cows, housed
at the UCD Lyons Research Farm, Newcastle, Co.
Dublin, Ireland. The cows were milked twice daily in a
45-unit rotary parlor, in which they were fed supplemen-
tal concentrates based on individual energy require-
ments. The farm operated a pasture-based production
system with daytime grazing during February and October/
November and full-time grazing from March until October.
During the winter months, the cows were fed a grass silage-
based diet. Locomotion scores (LS) were recorded manu-
ally, by a trained veterinarian (JS) according to Sprecher
et al. [55], which is based on a one-to-five scale, with one
being non-lame and five being severely lame. LS assessment
of all the milking cows was performed weekly on a 30-m
stretch of solid concrete floor, when the cows exited the
parlor after milking in the afternoon.
All the cows at the farm received a routine foot

trimming of the hind feet at the start of the study in
February 2017. The Dutch 5-step method [59] was used
to trim all cows’ hind feet, since most lesions affect the
hind claws [11, 54], front feet were examined when indi-
cated through lameness assessment. Footbaths contain-
ing an 8% copper sulphate solution were used routinely
during the study period. The footbath routine consisted
of two walk-through treatment footbaths, preceded by a
single plain water footbath, that were placed along the exit
corridor of the milking parlor. The cows walked through
these baths after morning and evening milking, three non-
consecutive days per week, for every three weeks.
A neck-mounted accelerometer (MooMonitor+®,

Dairymaster®, Causeway, Ireland) continuously recorded
activity of the cows, using a 3-dimensional accelerometer
which determined the cow movement and head direc-
tion. The accelerometer data were classified into 6
behavioral metrics, consisting of 3 activity metrics (low,
medium, high), rumination, resting and feeding, based
on a commercial algorithm designed for grazing dairy
cow systems [29, 65]. The thresholds for the 3 levels of
activity were based on activity intensity. Every 15 min,
the number of minutes spent on each behavior category
was registered in the MooMonitor+. Additional data
available for each cow were lactation number and milk
production data: milk yield (kg), milk constituents (fat/
protein/lactose) and somatic cell count. Live weight data
were recorded weekly, throughout lactation, using an
electronic weighing platform (Dairymaster®, Causeway,
Ireland).

Data analysis
Before the data was analyzed, data preparation was
performed for several variables in the datasets. The
behavioral metrics were recorded on 15 min basis and
were averaged as minutes per hour. When there were no

milk production and/or live weight records available on
the day of LS, an average was calculated from the re-
cording before and after the LS. To investigate patterns
of change over time, lagged variables were created for
the variables going back in time 21 days.
The final data set consisted of 3799 behavioral obser-

vations with associated live weight and milk production
data. All analyses were conducted using R version 3.4.2
[47]. Basic descriptive statistics were calculated using the
“psych” package [49]. Given the objective of identifying
potentially lame animals, cows which received LS 1 were
labelled as “sound”, cows with LS ≥ 2 were labelled as
“unsound”. This wording, instead of “lame” and” non-
lame”, was chosen to create a more balanced data set,
since there were not so many cows with LS > 3.
Machine learning methods were used to develop a

range of predictive models. Supervised classification
analysis was used to investigate whether cows could be
classified as sound and unsound, based on all available
behavioral activity, production and animal data, using
the assigned label based on LS as reference. Four classifi-
cation models were built, each containing a different
combination of the available data, which were trained on
a random subset of 60% of the data set and tested on
the remaining 40% of the data set. The training set is
bigger to prevent overfitting. The first model contained
the 6 MooMonitor+ behavioral metrics, the second
model contained lactation and DIM data. The third
model consisted of the data from the first and second
model combined, and the fourth model consisted of the
same data as the third but also added live weight and
milk production data (Table 1).
A gradient boosted decision tree machine learning

algorithm, xgboost [16] was used for classification of
sound and unsound cows. To improve the accuracy of
each predictive model, hyperparameter tuning was
performed by doing a grid search, which was set up
manually, and 10-fold cross-validation was used as
resampling method. The packages “caret” [68] and
“xgboost” [16] were used in R to build these models.
These four models were constructed with a default

cut-off value > 0.5 predicted probability for classification
of a cow as unsound. An optimal cut-off value for each

Table 1 Overview of the data included in the four classification
models that were built

Model Data included

1 MooMonitor+ behavioral metrics

2 Lactation number and DIM

3 Lactation number, DIM and MooMonitor+ behavioral metrics

4 Lactation number, DIM, MooMonitor+ behavioral metrics, live
weight and milk production dataa

aMilk production data consisted of milk yield (kg), milk constituents (fat/
protein/lactose) and somatic cell count
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model was determined to maximize predictive specificity
and sensitivity using Youden’s index [23].
Using a confusion matrix, the prediction output of

the classification was evaluated against the assigned
class based on LS as reference [40]. The true-positive
(TP / (TP + FN)) and true-negative (TN / (TN + FP))
rates can be obtained from the confusion matrix, as
well as the Cohen’s kappa statistic. The kappa statistic
measures how well the classifier has performed as
compared to how well it would have performed by
chance. Models achieving kappa statistic values be-
tween 0 and 0.20 are interpreted as “slight”, between
0.21 and 0.40 represent “fair” models, between 0.41
and 0.60 represent “moderate” models, between 0.61
and 0.80 represent “substantial” models, between 0.81
and 0.99 represent “almost perfect” models, and a
value of 1 represent a model which shows perfect
agreement between predicted and observed classifica-
tion [5, 39, 69]. A receiver-operator characteristic
curve (ROC-curve) was plotted to check the diagnos-
tic ability of the classification model at different
threshold values [23]. Accuracy was evaluated by the
area under the curve (AUC). As second method to
measure accuracy, a calibration plot was built [22,
62]. A well-calibrated model has a calibration curve
that “hugs” the straight line (y = x), corresponding to
true probability (LS) equals to predicted probability of
unsound cows in our study. At last, variable import-
ance was evaluated per model using variable import-
ance plots. Importance is ascribed to every variable in
the model by measuring the improvement of its role
as substitute to the primary split in the model, using
AUC as measure [9, 38]. The importance’s of the var-
iables are then scaled to have a maximum of
hundred.

Results
The number of recordings with LS 1 were 1979 (52.1%),
with LS 2 were 1086 (28.6%), with LS 3 were 544
(14.3%), with LS 4 were 185 (4.9%) and with LS 5 were 5
(0.1%) over the whole study period. This resulted in
1820 (47.9%) unsound labelled recordings in the
complete data set. The differences in the behavioral met-
rics, milk yield and live weight between sound and un-
sound cows, displayed in Table 2, were small and the
standard deviations were large.
The kappa statistic of the fourth model was the closest

to 1 (Table 3), which represents a model that shows
moderate agreement between predictions and observa-
tions [39, 69]. The first model has the lowest kappa
value (closer to zero, Table 3). A kappa value close to
zero, means that the model did not perform better than
chance [69].

The highest performance was achieved with the
fourth model (AUC = 0.85), which contained the most
variables in the model, using the default cut-off value
(Table 3). A model with only the 6 behavioral metrics
was the least performing model (AUC = 0.61). The
trend that was observed in the performance of the
models, was that with increasing number of variables
the performance increased (Table 3).
With the ROC-curve, the optimal cut-off value was

determined for each model, using Youden’s index.
For the first model, the optimal cut-off value

Table 2 Mean, median and standard deviations per
MooMonitor+ behavioral metric, milk yield and live weight for
sound and unsound labelled cows in the merged data set (3799
recordings; 1979 sound and 1820 unsound)

Variable (min/hour/day) Group N Mean Median Sd

Rumination Sound 1979 20.55 20.66 4.06

Unsound 1820 20.44 20.55 4.21

Resting Sound 1979 15.81 15.36 4.94

Unsound 1820 16.99 16.31 5.46

Feeding Sound 1979 19.27 20.72 6.26

Unsound 1820 18.18 19.26 6.44

Activitya

Low Sound 1979 2.46 1.64 2.22

Unsound 1820 2.32 1.78 1.72

Medium Sound 1979 1.53 1.27 1.35

Unsound 1820 1.62 1.31 1.52

High Sound 1979 0.38 0.21 0.86

Unsound 1820 0.46 0.20 1.08

Milk yield Sound 1979 24.39 23.85 8.29

Unsound 1820 27.81 28.00 9.84

Live weight Sound 1979 620.61 618.5 76.1

Unsound 1820 683.45 681.5 76.68
aThe activity data from the accelerometer consisted of 3 levels (low, medium,
high), based on a commercial algorithm designed for grazing dairy
cow systems

Table 3 Overview of the kappa (with 95% CI), accuracy,
specificity, sensitivity and area under the curve (AUC) per model,
with the default cut-off value (0.5)

Model Kappa [95% CI] Accuracy Specificity Sensitivity AUC

1 0.14 [0.09–0.19] 57% 60% 53% 0.61

2 0.53 [0.48–0.57] 75% 74% 77% 0.81

3 0.55 [0.51–0.59] 76% 76% 76% 0.84

4 0.58 [0.54–0.62] 78% 78% 78% 0.85

The first model consisted of MooMonitor + behavioral metrics. The second
model contained data on lactation and DIM, the third model added the
behavioral metrics to that, and the fourth model added live weight and
production data on top of the data of the third model
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resulted to be 0.5, the associated specificity 0.52 and
the sensitivity 0.66 (Fig. 1a). The second model
achieved an optimal cut-off of 0.42, with a specificity
of 0.79 and sensitivity of 0.73 (Fig. 1b). The optimal
cut-off of the third model was 0.39, the specificity
0.83 and the associated sensitivity was 0.72 (Fig. 1c).
For the fourth model the optimal cut-off was 0.54,
the associated specificity 0.77 and sensitivity 0.80 (Fig.
1d).
The accuracy of the four models was additionally checked

using calibration plots (Fig. 2). The calibration plots for the
third and fourth model show good calibration, since most
of the points were close to the straight line (Fig. 2).
Changing from the first to the second model, keep-

ing the cut-off value equal, increased the accuracy
from 57 to 75%. Also, the specificity (+ 14%), sensitiv-
ity (+ 24%), and the AUC (from 0.61 to 0.81)

increased. The differences between the second and
third model were smaller (around 1% increase/de-
crease), which was similar for the difference between
the third and fourth model. However, there was a
bigger impact of changing from the second to the
third model visible in the calibration plot, meaning an
increase in reliability of the predictions of the third
model.
At last, the importance of each variable to the

models was visualized in variable importance plots.
For the first model, which contained the MooMoni-
tor+ behavioral metrics, the most important vari-
ables were the low activity level, resting and
feeding. For the second, third and fourth models,
the variable lactation was the most important,
followed by DIM, liveweight and the low activity
level (Fig. 3).

Fig. 1 ROC-curves with the optimal cut-off value and associated specificity and sensitivity between brackets, for the first model a, containing the
6 MooMonitor+ behavioral metrics, the second model b, containing lactation number and DIM data, for the third model c, consisting of the 6
MooMonitor+ behavioral metrics and lactation and DIM and for the fourth model d, consisting of the 6 MooMonitor+ behavioral metrics,
lactation, DIM, live weight and milk production data
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Discussion
Based on information from sensor data, provided by a
neck mounted accelerometer, LS were used to classify
cows into sound or unsound. This was a suitable
solution to the small number of cows with extreme LS
values. Additionally, we considered it more important
that all potentially lame cows were identified for examin-
ation by the farmer rather than trying to determine the
precise score of each cow. If lameness is detected and
treated in an early stage, the development of a chronic
lameness state may be avoided [27, 46, 66].
Previous studies have used different methods for

the analysis of sensor data. A study performed to de-
velop a method for automatic classification of

accelerometer data into dairy cow behaviors used sup-
port vector machines, but this method has a consider-
able computational cost [42]. Another study used
decision tree induction to detect clinical mastitis with
sensor data and found that the model improved by
using boosting [35]. A regression tree with a boosting
technique based on additive logistic regression was
used for lameness detection, but detection perform-
ance was not high enough for practical implementa-
tion [34]. Therefore, the type of supervised
classification model used in this study, extreme gradi-
ent boosting, was chosen to achieve high levels of
both speed and performance [44].

Fig. 2 Calibration plots for the first model, containing the MooMonitor+ behavioral metrics, the second model, containing lactation number and
DIM, the third model, containing lactation number, DIM and MooMonitor+ behavioral metrics, and the fourth model, containing lactation
number, DIM, MooMonitor+ behavioral metrics, live weight and production data. The number above the points in the plot indicate the number
of records each prediction group contains, based on the predicted probabilities of the recordings. The lines show the 95% CI. A well-calibrated
model has the points close to the diagonal line, indicating agreement between predicted and observed probabilities
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Fig. 3 (See legend on next page.)
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The small difference in accuracy between the third
and fourth model may be explained by the fact that
the impact of body weight on lameness remains un-
clear. Some studies suggested that body weight is
possibly resulting from lameness and is not a causa-
tive factor [63, 64]. However, other studies found a
significant effect of live weight loss on lameness oc-
currence [3, 4]. The first model consisted only of ac-
tivity data, which performed less powerful in
classifying cows as sound and unsound. This study
showed that inclusion of activity data alone into
classification models for lameness detection achieved
lower accuracy compared to models that included a
combination of activity data, production data, lacta-
tion number and DIM as data inputs, or a model
that only included lactation and DIM. These results
support the findings of Chapinal et al. [15], Blackie
et al. [12] and Ito et al. [31], which reported that a
combination of several variables, such as weight dis-
tribution, lying bout duration and walking speed,
was most promising for automated lameness
detection.
Classification models with AUC values around 0.85,

which the third and fourth models achieve, can be
interpreted as good models (0.80 > AUC < 0.90) ac-
cording to Swets [56]. These models achieved higher
AUC values compared to prediction models in other
studies using the same combination of data, such as
the studies performed by Chapinal et al. [15], Kam-
phuis et al. [34], Van Hertem et al. [61], which
achieved AUC values up to 0.75, and Miekley et al.
[43] up to 0.8. The model with the highest sensitivity
was the fourth model. This sensitivity was higher com-
pared to other studies which used a comparable com-
bination of data [25, 34, 61].
The optimal cut-off values, with their associated speci-

ficities and sensitivities, were obtained with ROC-curves
by determining the cut-off values where the sum of sen-
sitivity and specificity was maximal [1]. With the optimal
cut-off value, the fourth model obtained the highest sen-
sitivity, which means that this model was the best in not
missing out possible lame cows. Higher sensitivities are
of great interest when the models are used to detect
treatable diseases. The study by Haladjian et al. [28],
which used an algorithm for the detection of anomalies
in walking patterns of cows, achieved a sensitivity of

74.2%. Our approach thus achieved a better result for
detecting possible lame cows, while they achieved a
higher specificity. The third model achieved the highest
specificity with the optimal cut-off value, which means
that this model has the probability of causing the farmer
to examine of too many non-lame cows. The specificity
of this model was higher than the specificity achieved in
a study that used radar data, which were analyzed with a
machine learning algorithm to automatically classify the
cows as lame or non-lame [14].

Conclusions
The present study analyzed the possibility to use ma-
chine learning methods to develop a prediction model
for lameness in dairy cattle, using commercially available
remote sensor technology in combination with routinely
available animal data. Our results showed that the use of
the MooMonitor+ for the detection of unsound cows
was best when used in combination with lactation
number, DIM, milk production and live weight data,
resulting in a high degree of predictive accuracy. The ap-
plication of this technology has the potential to be highly
beneficial in reducing the time to lameness diagnosis
and treatment and therefore making a significant impact
on animal welfare. Further research should involve
testing the external validity of the models in commercial
pasture based dairy production systems. In addition, the
association of lameness causing lesions and the predicted
classification should be explored.
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